宜昌鄂中生态工程有限公司 复合肥碳足迹核查报告

核查机构名称 (公章): 天津久信常实科技有限公司

核查报告签发日期: 2025年4月24日

产品碳足迹核查信息表

核查委托方	宜昌鄂中生态工程 有限公司	地址	宜都市枝城镇滨江大道 82 号	
联系人	杨敏	联系方式	18971863888	
产品生产者 (制造商)	宜昌鄂中生态工程 有限公司	地址	宜都市枝城镇滨江大道 82 号	
产品名称		复合肥		
产品系列/规格/型号		50kg/袋:总养分 245%:15-15-15		
核算依据		ISO 14067:2018 《温室气体产品碳足迹量 化的要求和指南》		
生命周期阶段		从摇篮到大门		
产品碳足迹功能单位		1件		
碳足迹(CO ₂ -eq)		2.68 kg		
and Resource				

核查结论:

经核查,宜昌鄂中生态工程有限公司生产的复合肥产品,依据 ISO 14067:2018 要求执行产品生命周期温室气体排放量的核查,核查结果确认符合 ISO 14067:2018 标准要求。

一套复合肥产品,"从摇篮到大门"的生命周期阶段碳足迹排放为: 2.68 kg CO₂-eq。

核查组长	耿璐	签名	研究证	日期	2025.4.24
技术评审人	张煦晨	签名	BAZZ	日期	2025.4.24
批准人	徐鉴为	签名	3482	日期	2025.4.24

目 录

1.	生命	周期评价与产品碳足迹	1
2.	目标-	与范围定义	1
		核查目的	
	2.2	核查范围	
		2.2.1 功能单位	
		2.2.2 核查指标	
		2.2.3 系统边界	
		数据取舍规则	
		数据质量要求	
	2.5	软件和数据库	5
3.	建模-	与数据收集	. 6
	3.1	产品现场生产	6
	3.2	原辅料生产	8
4	产品硕	炭足迹结果与分析	8
5	生命周	周期解释	9
	5.1	假设和局限性	9
	5.2	数据质量评估	10
		5.2.1 代表性	10
		5.2.2 完整性	10
		5.2.3 可靠性	11
		5.2.4 一致性	11
6	结论		11

1. 生命周期评价与产品碳足迹

生命周期评价方法 (Life Cycle Assessment, LCA) 是系统化、定量化评价产品生命周期过程中资源环境效率的标准方法,它通过对产品上下游生产与消费过程的追溯,帮助生产者识别环境问题所产生的阶段,并进一步规避其在产品不同生命周期阶段和不同环境影响类型之间进行转移。国内外很多行业都开展了产品LCA评价,用于行业内企业的对标和改进、行业外部的交流,并为行业政策制定提供参考依据。

产品碳足迹(Product Carbon Footprint, PCF)是指某个产品在其生命周期过程中所释放的直接和间接的温室气体总量,即从原材料开采、产品生产(或服务提供)、分销、使用到最终再生利用/处置等多个阶段的各种温室气体排放的累加。产品碳足迹已经成为一个行之有效的定量指标,用于衡量企业的绩效,管理水平和产品对气候变化的影响大小。

2. 目标与范围定义

2.1 核查目的

产品生命周期评价和碳足迹核查作为生态设计和绿色制造实施的基础,近年来已经成为人们研究和关注的热点。开展生命周期评价和碳足迹核查能够最大限度实现资源节约和温室气体减排,对于行业绿色发展和产业升级转型、应对出口潜在的贸易壁垒而言,都是很有价值和意义的。

本项目按照 ISO14040:2006 《环境管理 生命周期评价原则与框架》、ISO 14044:2006 《环境管理 生命周期评价 要求与指南》、ISO 14067:2018 《温室气体 产品碳足迹 量化的要求和指南》的要求,建立复合肥产品从原材料生产到产品出厂的生命周期模型,编写碳足迹核查报告,结果和相关分析可用于以下目的:

● 得到产品的生命周期碳足迹指标结果,用于同类型企业比较不同工艺下 产品的碳排放情况,选择更为环境友好的工艺技术。

- 报告可用于下游整机产品绿色设计与供应链绿色制造,整机制造商和设计师可根据复合肥产品的生命周期碳足迹指标选择更为低碳的复合肥产品产品。
- 报告可用于市场宣传,展示复合肥产品生产新工艺在碳排放方面的优势, 为厂商采购和复合肥产品制造企业产品销售提供材料支持。

2.2 核查范围

2.2.1 功能单位

本次研究的功能单位定义为:整机的1件复合肥产品的生产,50kg 重量约为50000g。复合肥产品的结构如图1所示。

图 1 复合肥产品图

2.2.2 核查指标

本项目通过对碳足迹指标的核查,帮助企业发现减少产品温室气体排放、实现节能减排的途径,同时也是一种促进绿色消费的重要手段,从而支持可持续的生产与消费。通过对产品碳足迹的核查,为企业评估和实施有针对性的改进提供基础数据。

碳足迹的计算结果为产品生命周期各种温室气体总量排放,用二氧化碳当量(CO_2 -eq)表示,单位为 kg CO_2 -eq 或者 g CO_2 -eq。常见的温室气体包括二氧化碳(CO_2)、甲烷(CH_4)、氧化亚氮(N_2O)、氢氟碳化物(HFC)和全氟化碳(PFC)等。

2.2.3 系统边界

本项目核查的系统边界包括上游原辅料和能源的生产阶段、复合肥产品生产 阶段,产品的生命周期系统边界属从"摇篮到大门"的类型,如图 2 所示;不包 含原辅料和产品的运输、生产、复合肥产品的使用和废弃回收阶段。

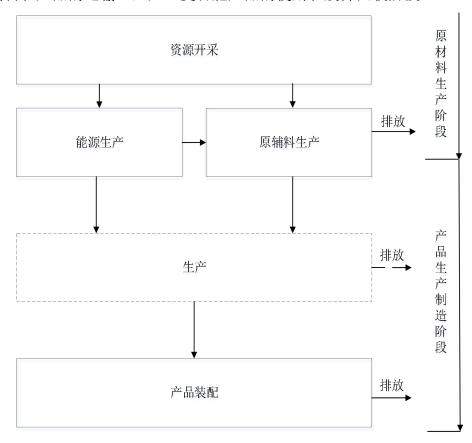


图 2 复合肥产品生命周期系统边界

2.3 数据取舍规则

在选定系统边界和指标的基础上,应规定一套数据取舍准则,忽略对评价结果影响不大的因素,从而简化数据收集和评价过程。本研究取舍准则如下:

- a) 原则上可忽略对碳足迹结果影响不大的能耗、原辅料、使用阶段耗材等消耗。例如,小于产品重量 1%的普通消耗可忽略,而含有稀贵金属(如金银铂钯等)或高纯物质(如纯度高于 99.99%)的物耗小于产品重量 0.1%时可忽略,但总共忽略的物耗推荐不超过产品重量的 5%;
- b) 道路与厂房等基础设施、生产设备、厂区内人员及生活设施的消耗和排放,可忽略。

2.4 数据质量要求

数据质量评估的目的是判断碳足迹核查结果和结论的可信度,并指出提高数据质量的关键因素。本研究数据质量可从四个方面进行管控和评估,即代表性、完整性、可靠性、一致性。

- 1)数据代表性:包括地理代表性、时间代表性、技术代表性三个方面。
 - 地理代表性:说明数据代表的国家或特定区域,这与研究结论的适用性密切相关。
 - 时间代表性:应优先选取与研究基准年接近的企业、文献和背景数据 库数据。
 - 技术代表性:应描述生产技术的实际代表性。
- 2)数据完整性:包括产品模型完整性和数据库完整性两个方面。
 - 模型完整性:依据系统边界的定义和数据取舍准则,产品生命周期模型需包含所有主要过程。产品生命周期模型尽量反映产品生产的实际情况,对于重要的原辅料(对碳足迹指标影响超过5%的物料)应尽量调查其生产过程;在无法获得实际生产过程数据的情况下,可采用背景数据,但需对背景数据来源及采用依据进行详细说明。未能调查的重要原辅料需在报告中解释和说明。

- 背景数据库完整性:背景数据库一般至少包含一个国家或地区的数百种主要能源、基础原材料、化学品的开采、制造和运输过程,以保证背景数据库自身的完整性。
- 3) 可靠性:包括实景数据可靠性、背景数据可靠性、数据库可靠性。
 - 实景数据可靠性:对于主要的原辅料消耗、能源消耗和运输数据应尽量采用企业实际生产记录数据。所有数据将被详细记录从相关的数据源和数据处理算法。采用经验估算或文献调研所获取的数据应在报告中解释和说明。
 - 背景数据可靠性: 重要物料和能耗的上游生产过程数据优先选择代表原产地国家、相同生产技术的公开基础数据库,数据的年限优先选择近年数据。在没有符合要求的背景数据的情况下,可以选择代表其他国家、代表其他技术的数据作为替代,并应在报告中解释和说明。
 - 数据库可靠性:背景数据库需采用来自本国或本地区的统计数据、调查数据和文献资料,以反映该国家或地区的能源结构、生产系统特点和平均的生产技术水平

4) 一致性

所有实景数据(包括每个过程消耗与排放数据)应采用一致的统计标准,即基于相同产品产出、相同过程边界、相同数据统计期。若存在不一致的情况,应 在报告中解释和说明。

2.5 软件和数据库

本项目采用亿科开发的 eBalance 软件和中国生命周期基础数据库 CLCD, 建立产品生命周期模型并计算分析。部分原辅料数据采用了瑞士 Ecoinvent 数据库的数据。

CLCD 是代表中国基础工业系统的 LCA 基础数据库,反映中国生产技术及市场平均水平。CLCD 数据库包括国内 600 多个大宗的能源、原材料、运输的清单数据集,是国内目前唯一可公开获得的中国本地生命周期基础数据库。

Ecoinvent 数据库是国际上用户最多的 LCA 数据库之一, 包含欧洲及世界多

国的 7000 多个单元过程数据集以及相应产品的汇总过程数据集。Ecoinvent 数据库适用于含进口原材料的产品或出口产品的 LCA 研究,在本项目中也用于代替中国本地缺失的数据。

3. 建模与数据收集

根据数据来源不同分为产品生产制造阶段和原材料生产阶段:

3.1 产品现场生产

复合肥产品的生产工艺流程如下:

该硫磺制酸工程采用快速熔硫与液硫净化、两次转化,中温两次 98%硫酸吸收工艺。主要生产过程由原料工段、熔硫工段、焚硫转化工段、干吸工段和成品工段五部分组成。

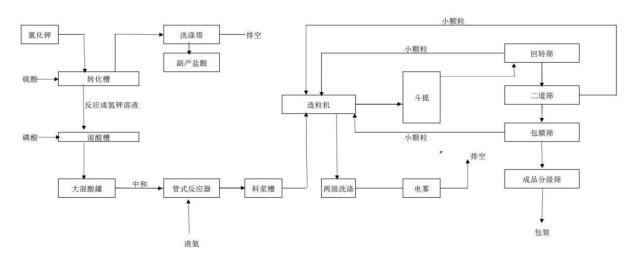
(1)原料工段

磷矿先在鄂式破碎机中破碎,然后送入碎矿贮斗,再通过电子皮带秤将破碎的 磷矿送至球磨机进行研磨。磨好的矿浆经滚简筛筛出大颗粒后,符合细度和浓度 要求的矿浆,直接流入矿浆贮槽,由矿浆泵送至反应槽。

湿磨所需的水量是根据磷矿加入量的多少,由转子流量计计量后加入磨机。

其中大部分水从磨头加入,小部分水从磨机尾部加入,控制矿浆含水量不大于 30%。

(2)反应工段


从原料工段送来的矿浆进入反应槽。硫酸则从硫酸贮槽用硫酸泵送入反应槽。通过自控调节确保矿浆和硫酸按比例加入。反应所获得的磷酸和硫酸钙结晶混合料浆,通过料浆泵送至转台式过滤机进行过滤。为了降低反应槽中料浆的温度,采用低位闪蒸冷却器冷却。反应槽排出的含氟气体通过文丘里吸收塔用水循环洗涤,吸收液用循环泵再送吸收塔进行循环吸收。净化后的尾气经排风机和排气简排空。为减少污水排放,正常生产时,含氟污水循环利用。

(3)过滤工段

反应料浆经过滤所得滤液通过气液分离器分离后,液体即为成品磷酸,并进入滤洗液中间槽,由立式泵一部分回流至滤洗液中间槽一洗液中,另一部分送往磷酸澄清槽待用。过滤所获得石膏滤饼,经洗涤后,经胶带输送机送往厂内磷石膏堆场。滤饼的洗涤采用逆流三次洗涤流程,清液池中含氟、含磷污水经清液循环泉送去冲洗滤布用。过滤工段所需的真空由水环式真空泵产生。抽出的气体经冷凝器用水冷却。真空泵冷却水集中在冷却水池。通过泵送至冷凝器作冷却水。从冷凝器中排出的废水,经液封槽排入冷凝水送至循环水系统。

(4)磷石膏

磷石膏采用干法排渣,过滤所获得石膏滤饼,经洗涤后,转卸入螺旋输送机,并 经胶带输送机送往厂内磷石膏堆场,含水 70%左右,再用汽车转至场外磷石膏永久 堆场再利用。

复合肥生产工艺流程图

图 2 复合肥工艺流程图

复合肥产品的生产环节现场数据收集相对简单,企业提供了产品的材料清单表(Bill of Material, BOM),由于工艺生产较为简单,能源消耗有电力、蒸汽、煤消耗。能耗见表 1。

能源类型	数量	单位
电力	31.76	kWh/每件

表 1 复合肥产品现场生产能耗

蒸汽	12.03	g/每件
煤	26.74	kg/每件

3.2 原辅料生产

复合肥产品原辅料消耗数据是根据企业提供的复合肥产品材料清单表中的 材质信息得到的。

表 2 主要原辅材料材质一览表

物料名称
硫磺
磷矿石
氯化钾
尿素
氨
催化剂

4 产品碳足迹结果与分析

根据企业提供的产品 BOM、收集的生产过程的能源消耗数据和部分原料的 文献调研数据,在 eBalance 中建立了复合肥产品的生命周期模型。

一套复合肥产品的碳足迹结果为 2.68kg CO₂-eq, 即产生 2.68kg 二氧化碳当量。产品生产现场使用电力,对于碳足迹的贡献率为 5%,原材料消耗对于碳足迹的贡献达到 95%。

表 3 复合肥产品现场能源消耗的碳足迹贡献结果

能源类型	数值(kg CO ₂ -eq)	贡献率%
------	----------------------------	------

电力	0.766	2%
蒸汽	0.13	1%
煤	0.53	2%

表 4 复合肥产品产品的生命周期碳足迹贡献结果

材料清单	数值(kg CO ₂ -eq)	贡献率%
硫磺	0. 522	50%
磷矿石	0.31	30%
氯化钾	0.07	5%
尿素	0.05	4%
氨	0.05	4%
催化剂	0. 25	2%

注: 上表中仅罗列了 GWP (kg CO2 eq)灵敏度>0.5%的清单数据。

由上表可知,对于产品碳足迹结果有较大贡献的原材料为各用途和各规格的 硫磺,总贡献率达到 50%;磷矿石的总贡献率也超过 30%。

从上图可以看出,对复合肥产品产品生命周期碳足迹有主要贡献的是硫磺原材料的使用,包括:(1)硫磺,贡献率达到50%;(2)磷矿石,贡献率达到30;(3)氯化钾,贡献率达到5%。

生产过程用电、蒸汽、煤,对复合肥产品产品生命周期碳足迹的贡献率为5%。

5 生命周期解释

5.1 假设和局限性

本次复合肥产品产品碳足迹报告的实景数据中复合肥产品的生产过程数据来源于企业调研数据,背景数据来自中国生命周期数据库 CLCD 和瑞士的 Ecoinvent 数据库,部分原料生产过程的数据采用文献数据。受项目调研时间及供应链管控力度限制,未调查外购重要原料的实际生产过程,计算结果与实际供应链的环境表现有一定偏差。建议在调研时间和数据可得的情况下,进一步调研主要外购原材料的生产过程数据,有助于提高数据质量,为企业在供应链上推动协同改进提供数据支持。

5.2 数据质量评估

5.2.1 代表性

本次报告中各单元过程实景数据均发生在宜昌。

实景数据采用 2024 年的企业生产统计数据,背景数据库数据采用近 6 年的数据,文献调查数据采用近 6 年的数据。

企业技术工艺主要包括:反应过滤;主要原材料为:硫磺;主要能源消耗为: 电、蒸汽、煤。

5.2.2 完整性

(1) 模型完整性

本次报告中产品生命周期模型包含上游原辅料生产和运输、产品生产过程,满足本研究对系统边界的定义。产品生产过程中所有原料消耗均被考虑在内,产品生产过程工艺流程包括反应过滤,涉及的能源消耗有电、蒸汽、煤。

(2) 背景数据库完整性

本研究所使用的背景数据库包括 CLCD-China 数据库和瑞士的 Ecoinvent 数据库。CLCD-China 数据库包括中国国内 600 多个大宗的能源、原材料、运输的清单数据集,并仍在不断扩展。Ecoinvent 数据库包含欧洲及世界多个国家的 7000 多个单元过程数据集以及相应产品的汇总过程数据集。

以上两个背景数据库均包含了主要能源、基础原材料、化学品的开采、制造和运输过程,满足背景数据库完整性的要求。

5.2.3 可靠性

(1) 实景数据可靠性

本次报告中,各实景过程主要原料和能源消耗数据均来自企业产品 BOM 表或实测数据,数据可靠性高。

(2) 背景数据可靠性

本研究中 CLCD 数据库数据采用中国或中国特定地区的统计数据、调查数据和文献资料,数据代表了中国生产技术及市场平均水平,数据收集过程的原始数据和算法均被完整记录,使得数据收集过程随时可重复、可追溯。

5.2.4 一致性

本研究所有实景数据均采用一致的统计标准,即按照单元过程单位产出进行统计。所有背景数据采用一致的统计标准,其中 CLCD 数据库在开发过程中建立了统一的核心模型,并进行详细文档记录,确保了数据收集过程的流程化和一致性。

6. 结论

本次报告主要得出以下结论:

- 一套件复合肥产品的碳足迹结果为 2.68kg CO₂-eq, 生产过程能源的碳足迹贡献率为 5%; 原材料消耗对于碳足迹的贡献达到 95%;
- 各组件的碳足迹指标分析表明:硫磺的总贡献率达到 50%,磷矿石的总 贡献率也超过 30%,企业可考虑控制上述两种原材料的使用量,可有效 减少产品的碳足迹;
- 各种原材料材质的碳足迹指标分析表明:对复合肥产品产品生命周期碳足迹有主要贡献的是硫磺原材料的使用,包括:(1)硫磺,贡献率达到50%;(2)磷矿石,贡献率达到30%;(3)氯化钾,贡献率达到5%。企业可着重关注上游原材料的使用,在材料可替代的前提下,选择碳足迹较低的原材料。
- 产品的生产过程用电、蒸汽、煤,对复合肥产品产品生命周期碳足迹的

贡献率为5%,企业可通过节约电耗或利用可再生能源电力等方式以降低产品的碳足迹。

● 受企业供应链管控力度限制,未调查外购重要原料的实际生产过程,计算结果与实际供应链的环境表现有一定偏差。建议企业在条件允许的情况下,进一步调研主要外购原材料的生产过程数据,有助于提高数据质量,为企业在供应链上推动协同改进提供数据支持。